BENEFITS OF CONTINUOUS MONITORING OF PCO2 OBTAINED FROM A SYSTEM APPLIED TO MEMBRANE OXYGENATOR EXHAUSTION OF THE CARDIOPULMONARY BYPASS CIRCUIT

Authors

  • Valdir Assis dos Reis Filho Instituto Dante Pazzanese de Cardiologia
  • Erika Lopes de Oliveira Instituto Dante Pazzanese de Cardiologia, São Paulo, Brasil
  • Juna Flávia Scramim Instituto Dante Pazzanese de Cardiologia, São Paulo, Brasil
  • Marcela Arias Sanga Instituto Dante Pazzanese de Cardiologia, São Paulo, Brasil
  • Magali Arrais dos Santos Instituto Dante Pazzanese de Cardiologia, São Paulo, Brasil

DOI:

https://doi.org/10.48729/pjctvs.104

Abstract

Objective: To observe the impact of the use of capnography system adapted to cardiopulmonary bypass (CPB). To measure the concordance between values obtained from continuous monitoring of partial pressure of carbon dioxide in membrane oxygenator exhaustion (PeCO2) and the results observed on arterial blood gas test.

Methods: Participated in this study 40 patients submitted to elective cardiovascular surgery with CPB. They were divided into two groups: Group 1, with 20 patients submitted to the surgical procedure using blood gas analysis at intermittent intervals (20 - 30 minutes); Group 2, with 20 patients operated with a capnography system adapted applied to membrane oxygenator exhaustion and blood gas test. A test was used to compare arterial partial pressure of carbon dioxide (PaCO2) from group 1 and group 2. In group 2, the strength of the correlation between PeCO2 and PaCO2 was evaluated by a linear regression test. The Bland-Altman method was used to determine the degree of agreement between the two variables.

Results: Average and standard deviation of Group 1’s PaCO2 (34.6 ± 7.44) and Group 2’s PaCO2 / PeCO2 (36.5 ± 4.42) / (39.9 ± 3.98). There was no statistically significant difference in PaCO2 between the groups (P = 0.21). In group 2, PeCO2 and PaCO2 analyzed corrected for esophageal temperature obtained a positive linear correlation (r = 0.79, P <0.001), the degree of agreement presented an average 3.47 ± 2.70 mmHg.

Conclusion: The continuous PeCO2 monitoring from cardiopulmonary bypass circuit has a positive impact on the result of PaCO2. This instrument confirms and maintains the carbon dioxide (CO2) values into reference parameters.

Downloads

Download data is not yet available.

References

Pereira IB, Batista DCS. O perfusionista e o equilíbrio ácido/base durante a circulação extracorpórea. Rev Elet Acer Sau. 2013; 5(2): 456-473.

Luz HLM, Auler Júnior JOC. Temperature and Acid-Base Balance in Coronary Bypass Grafting with Cardiopulmonary Bypass, under Hypothermia and Normothermia. Rev Bras Anestesiol. 2002; 52(2):197-208.

Pereira M, Vilela H, Pina L. Capnografia como método de monitorização ventilatória durante estados de sedação induzida. Rev Soc Port Anestesiol. 2006; 14(4): 24-28.

Graham JM, Gibbs NM, Weightman WM, Sheminant MR. The relationship between oxygenator exhaust PCO2 and arterial PCO2 during hypothermic cardiopulmonary bypass. Anaesth Intensive Care. 2005; 33(4): 457–461.

Potger KC , McMillan D , Southwell J , Dando H , O’Shaughnessy K. Membrane oxygenator exhaust capnography for continously estimating arterial carbon dioxide tension during cardiopulmonary bypass . J Extra Corpor Technol. 2003; 35(3): 218-223.

Baraka A, El-Khatib M, Muallem E, Jamal S, Haroun-Bizri S, Aouad M. Oxygenator exhaust capnography for prediction of arterial carbon dioxide tension during hypothermic cardiopulmonary bypass. J Extra Corpor Technol. 2005; 37(2): 192–195.

Abreu TT. Análise da variação de eletrólitos após cirurgia cardíaca com uso de circulação extracorpórea [Monografia]. Salvador: Universidade Federal da Bahia – UFBA; 2014.

Antunes N, Dragosavac D, Petrucci O, Oliveira M, Kosour C, Blotta M, Braile M, Vieira R. The use of ultrafiltration for inflammatory mediators removal during cardiopulmonary bypass in coronary artery bypass graf surgery. Braz J Cardiovasc Surg. 2008;23(2):175-82.

Guyton AC, Hall JE. Tratado de fisiologia médica. 12ª ed. Rio de Janeiro: Elsevier; 2011.

Kristiansen F, Hogetveit JO, Pedersen TH. Clinical evaluation of an instrument to measure carbon dioxide tension at the oxygenator gas outlet in cardiopulmonary bypass. Perfusion. 2006; 21(1): 21–26.

Madias NE. Renal acidification responses to respiratory acid-base disorders. J Nephrol. 2010; 23(16): 85–91.

Mota AL, Rodrigues AJ, Évora PRB. Adult cardiopulmonary bypass in the twentieth century: science, art or empiricism?? Braz J Cardiovasc Surg. 2008; 23(1): 79-92.

Souza MHL, Elias DO. Fundamentos da Circulação Extracorpórea. 2ª ed. Rio de Janeiro: Alfa Rio; 2006.

Torrati FG, Dantas, RAS. Circulação extracorpórea e complicações no período pós-operatório imediato de cirurgias cardíacas. Acta Paul Enferm. 2012; 25(3): 40-345.

Taniguchi FP, Souza AR, Martins AS. Tempo de circulação extracorpórea como fator risco para insuficiência renal aguda. Rev Bras Cir Cardiovasc. 2007; 22(2): 201-5.

Downloads

Published

30-04-2021

How to Cite

1.
dos Reis Filho VA, Lopes de Oliveira E, Scramim JF, Arias Sanga M, Arrais dos Santos M. BENEFITS OF CONTINUOUS MONITORING OF PCO2 OBTAINED FROM A SYSTEM APPLIED TO MEMBRANE OXYGENATOR EXHAUSTION OF THE CARDIOPULMONARY BYPASS CIRCUIT. Rev Port Cir Cardiotorac Vasc [Internet]. 2021 Apr. 30 [cited 2024 Mar. 29];26(3):205-8. Available from: https://pjctvs.com/index.php/journal/article/view/104

Issue

Section

Original Articles