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Introduction: Cardiovascular diseases affect 17.7 million people annually, worldwide. Carotid degenerative disease,  
commonly described as  atherosclerotic plaque accumulation, significantly contributes to this, posing a risk for cerebrovascular 
events and ischemic strokes. With carotid stenosis (CS) being a primary concern, accurate diagnosis, clinical staging, and timely 
surgical interventions, such as carotid endarterectomy (CEA), are crucial. This review explores the impact of Artificial Intelligence 
(AI) and Machine Learning (ML) in improving diagnosis, risk stratification, and management of CS.

Methods: A comprehensive literature review was conducted using PubMed and SCOPUS, focusing on AI and ML 
applications in diagnosing and managing extracranial CS. English language publications from the past two decades were 
reviewed, including cross-referenced scientific articles.

Results: Recent advancements in AI-enhanced imaging techniques, particularly in deep learning, have significantly 
improved diagnostic accuracy in identifying carotid plaque vulnerability and symptomatic plaques. Integration of clinical risk 
factors with AI systems has further enhanced precision. Additionally, ML models have shown promising results in identifying 
culprit arteries in patients with previous cerebrovascular events. These advancements hold immense potential for improving CS 
diagnosis and classification, leading to better patient management.

Conclusion: Integrating AI and ML into vascular surgery, particularly in managing CS, marks a transformative 
advancement. These technologies have significantly improved diagnostic accuracy and risk assessment, paving the way for more 
personalized and safer patient care. Despite clinical validation and data privacy challenges, AI and ML have immense potential for 
enhancing clinical decision-making in vascular surgery, marking a pivotal phase in the field's evolution. 
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Abstract

INTRODUCTION

Annually, around 17.7 million people are affected by 
cardiovascular (CV) diseases, including  myocardial infarction 
(MI) and strokes, with atherosclerosis being the major 
contributor to these events.(1) 

Carotid disease, which involves the accumulation 
of atherosclerotic plaques, is a significant risk factor for 
cerebrovascular events and ischemic strokes. It is estimated 

that carotid disease affects roughly 27.6% of individuals 
between the ages of 30 and 90, globally.(2)

For high-risk stroke patients with carotid stenosis (CS), 
carotid endarterectomy (CEA) is the preferred treatment, 
whether symptomatic or asymptomatic, while transfemoral 
carotid stenting (CAS) is considered as an alternative in 
selected cases.(3) However, it's important to note that 
every surgery involves inherent perioperative risks. Surgical 
interventions such as CEA often involve patients with multiple 
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comorbidities, which categorizes these procedures as high-risk 
interventions.(4) Despite advancements in surgical techniques 
and perioperative care, certain patients undergoing CEA under 
regional anesthesia experience intraoperative neurologic 
deficits (IND) during carotid artery cross-clamping. These 
deficits, indicative of critical cerebral perfusion impairments, 
significantly increase patient management complexity and 
are associated with increased postoperative complications, 
including stroke.(5)

The Society for Vascular Surgery sets a goal for the 
perioperative stroke/death rate to be under 6% for symptomatic 
patients and under 3% for asymptomatic patients, underlining 
the need for accurate prediction of postoperative outcomes to 
aid in clinical decision-making.(6, 7) 

Predictors such as increased red cell distribution width 
coefficient of variation, age, obesity, and specific degrees 
of ipsilateral and contralateral carotid stenosis have been 
identified as relevant factors for predicting IND during CEA.(5) 
Harnessing the potential of artificial intelligence (AI) to improve 
risk stratification and clinical outcomes in CS management 
is crucial with the expanding amount of data and continual 
technological progress.

The AI into CV disease management has marked 
a significant advancement. (8) Machine learning (ML), a 
prominent branch of AI, allows computer systems to learn from 
data, identify patterns, and predict outcomes without explicit 
programming. ML offers a more advanced and nuanced 
approach, condensing vast data volumes to meaningful insights 
and overcoming some limitations of conventional statistical 
models, mainly based on inference and probability.(7, 8)

With its heavy reliance on medical imaging and 
significant advancements due to the endovascular revolution, 
vascular surgery is an ideal area for sophisticated ML 
integration.(9)

AI is increasingly recognized for its potential to 
enhance diagnostic accuracy, optimize patient selection for 
surgical procedures, including predicting  IND and predict 
critical long-term outcomes, such as strokes. (8, 10) 

This review focuses on applying AI and ML models for 
predicting CS patients, risk stratification post-CEA/CAS adverse 
events, and identifying  the main predictors. The increasing 
relevance of AI in the medical field, particularly for diagnostic 
and prognostic purposes in CS, underpins this review. (7) 
Additionally, it will highlight recent studies and expected 
advancements in this rapidly evolving field of medicine.

METHODS

A comprehensive literature review was carried out to 
collate data from relevant studies in patients with extracranial 
stenosis. The search was performed resorting to PubMed 
and SCOPUS on november 2023 with the keywords / MESH 
terms “carotid stenosis” and “carotid endarterectomy” in 
combination with the terms “artificial intelligence” and 
“machine learning”. For this study, the authors focused on 
publications in the past decade, between january 2014 and 
march 2024, using English language publications. Additional 

articles of scientific interest for this non-systematic review 
were included by cross-referencing.

RESULTS

Carotid stenosis
Due to distinctive blood flow patterns, supra-aortic 

vessels are susceptible to atherosclerosis, particularly at their 
bifurcation points. The plaques formed in these arteries are 
typically composed of lipids and inflammatory cells enclosed 
by a fibrous capsule. (11) When these plaques are present in 
the carotid artery, they can cause blockages or, occasionally, 
rupture, leading to clots. Such events are frequently implicated 
in ischemic strokes, which are often due to emboli originating 
from these atherosclerotic plaques. (11, 12) Thrombotic plaques 
are more commonly observed in individuals who have suffered 
strokes (66.9%), compared to those with transient ischemic 
attacks (TIAs, 36.1%) or in asymptomatic individuals (26.8%). 
Initially, the embolization caused by these plaques may lead 
to TIAs.(11)

A comprehensive analysis of patient data indicates 
that surgical intervention considerably reduces the risk in cases 
of severe CS (70% to 99%) but provides limited benefits for 
moderate stenosis (50% to 69%). It has been suggested that 
centers using the European Carotid Surgery Trial (ECST) or 
the common carotid method adapt their recommendations 
to suggest surgery for severe stenosis (82% to 99%) and 
implement individualized risk assessments for moderate 
stenosis (65% to 81%).(13)

In a study focusing on symptomatic patients with 
suspected internal carotid (ICA) stenosis, comparing contrast-
enhanced magnetic resonance angiography (CEMRA) with 
digital subtraction angiography (DSA), CEMRA was found to 
slightly overestimate stenosis severity, especially when using 
the ECST method. This result contrasted with the North 
American Symptomatic Carotid Endarterectomy Trial (NASCET) 
method, where CEMRA showed lower sensitivity in detecting 
severe stenosis.(13)

Understanding CS, particularly its development and 
its risk for ischemic strokes, is crucial in vascular field. The 
use of surgical interventions like CEA, guided by reliable 
diagnostic methods and risk stratification techniques such as 
NASCET and ECST, plays a pivotal role in preventing stroke in 
patients with significant stenosis. However, the challenge lies 
in accurately diagnosing the severity of stenosis, as techniques 
like CEMRA may have limitations, notably in overestimating 
stenosis compared to DSA, particularly with the ECST method. 

AI in unstable carotid plaque detection
In recent years, there has been increasing evidence 

suggesting that plaque characteristics correlate with neurological 
adverse events, leading to the concept of vulnerable plaques. 
Neovascularization within plaques has emerged as a significant 
predictor of plaque rupture. (14)

Carotid plaques, with their varied components formed 
during different stages of plaque development, present a diagnostic 
challenge due to image noise and lesion complexity. (15, 16) 
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Recent advancements in AI, namely in deep learning 
(DL), have greatly improved medical imaging techniques. In a 
study by Guang et al., a DL system applied to ultrasound (US) 
imaging for identifying carotid plaque vulnerability achieved 
area under the curve (AUC) scores of 0.85 and 0.87 in training 
and validation, respectively. This result surpassed experienced 
radiologists' performance, who achieved scores of 0.69 and 
0.66, underscoring DL's potential in enhancing diagnostic 
precision. (14) 

Similarly, Huang et al. developed an advanced model 
combining US-based radiomics (plaque size, length, thickness, 
plaque echogenicity, and contrast enhancement) and clinical 
features (hypertension [HT], high-sensitivity C-reactive protein 
exceeding the upper normal limit, diabetes, smoking, and 
clinical symptoms such as anterior circulation ischemic stroke in 
the carotid region, classic TIA, amaurosis fugax or retinal artery 
occlusion ipsilateral to the carotid artery plaque), significantly 
improving the detection of symptomatic carotid plaques. This 
model achieved high predictive accuracy, with AUC scores 
of 0.93 and 0.92 in training and testing, outperforming 
traditional US and clinical models, which scored 0.723 and 
0.580, respectively, demonstrating the effectiveness of AI-
enhanced methods.(17) 

Further enhancing the capabilities of AI in vascular 
imaging, a study showed that an ML system integrating carotid 
US images with traditional clinical risk factors: age, glycated 
hemoglobin (HbA1c), plaque score (PS), carotid intima-
media thickness average (cIMTave), low-density lipoprotein 
cholesterol (LDL-c), fasting blood sugar (FBS), HT, triglyceride 
(TG), total cholesterol/high-density lipoprotein-cholesterol (TC/
HDL-c) ratio, smoking, square harmonic of cIMTave, HDL-c, 
family history (FH), TC, cIMTave 10yr, variability of carotid 
intima-media thickness (cIMT) 10yr, difference between 
average lumen diameter and maximum cIMT, and total plaque 
pixels) reached an AUC of 0.80 (p<0.0001). This result was 
an 18% improvement over the conventional system using only 
clinical risk factors (age, HbA1c, LDL-c, FBS, HT, TG, smoking, 
FH, and TC/HDL ratio). The study highlighted HbA1c, PS, and 
cIMTave as the top three predictive features and the model's 
ability to assess CV and stroke risks with high precision and 
clinical relevance. However, the study's focus on a Japanese 
cohort may limit the wider applicability of these findings.(1)

Additionally, other research efforts involved analyzing 
duplex ultrasonography and transcranial doppler data from 
538 subjects. This study compared the performance of the 
random forest (RF) model with logistic regression (LR) for 
stenosis classification. The RF model showed superior accuracy, 
sensitivity, and specificity, with AUC values between 0.99 and 
1.00. Peak systolic velocity was a key predictor in the ICA.(18)

AI's application extends beyond the US to other imaging 
modalities. Le et al. explored the use of radiomic features from 
carotid computed tomography angiography (CTA) to identify 
culprit arteries in patients with previous cerebrovascular events 
(TIA or stroke). ElasticNet model achieved an AUC of 0.73, 
indicating a promising level of accuracy in identifying the 
culprit and non-culprit arteries, which could significantly aid 
in stroke prediction. The three most relevant predictors were 

grey level dependence matrix: dependence variance, grey level 
size zone matrix: grey level non-uniformity, and grey level run 
length matrix features: long run high grey level emphasis.(19)

Further illustrating the versatility of ML in this field, 
Xia H et al. conducted a study where they developed five ML 
models to predict ischemic cerebrovascular events in patients 
with mild CS (30–50%). This study, utilizing radiomics and 
clinical data from CTA, involved 179 patients and identified 
the RF model as the most effective, achieving an AUC of 0.879. 
The most important predictive features were 3D diameter, LDL, 
and uric acid. The study, however, faced limitations such as 
small sample size and potential bias due to manual image 
segmentation.(20)

These AI and ML approaches in vascular imaging, 
especially in carotid plaque analysis, significantly advance 
personalized patient care. Enhancing diagnostic precision and 
risk assessment revolutionizes the management of extracranial 
atherosclerotic conditions.

Table 1 highlights the main characteristics of the 
reviewed articles, emphasizing the clinical application and 
type of the prediction models.

AI applied to carotid stenosis screening
Asymptomatic carotid stenosis (ACS) is closely 

associated with the incidence of severe cerebrovascular diseases, 
which can often be discovered incidentally through medical 
imaging. However, medical imaging is not recommended in 
asymptomatic patients without clinical manifestations or risk 
factors of atherosclerosis.(21, 22) Detecting CS in asymptomatic 
patients is key for predicting and preventing serious CV events 
such as MI, strokes, and CV deaths. (21, 22) 

Different studies have been done to evaluate the 
potential of AI in ACS. Table 2 provides an overview of studies 
investigating AI's application in the ACS assessment. In a 
study by Yu et al., ML was used to screen 2732 asymptomatic 
adults for CS. They developed five models, and the multilayer 
perceptron model, which emerged as the most accurate 
(0.748), identified CS in 942 individuals (34.5%) with an AUC 
of 0.766, followed by Extreme Gradient Boosting (XGBoost) 
ML algorithm which achieved an accuracy of 0.741 and 
an AUC of 0.763, highlighting age, blood pressure (BP), 
homocysteine, and HDL-c as key risk factors.(22)

Yin et al. demonstrated that the RF algorithm could be 
used to identify key risk factors associated with ACS. However, 
the model can only be applied to high-risk individuals with 
stroke. The model achieved a high level of accuracy in 
detecting ACS, with an AUC of 0.927 in the training dataset 
and 0.888 in the testing dataset. The identified risk factors 
included a FH of dyslipidemia, elevated LDL-c, reduced HDL 
cholesterol, aging, and low body mass index (BMI).(23) In 
another study analyzing 18,441 participants, 35.5% were 
diagnosed with asymptomatic CS. Six AI models were tested, 
with the LR model being the most effective, achieving an AUC 
of 0.809, 74.7% accuracy, and an F1 Score of 59.9%. The 
study identified age, systolic BP, glucose, HDL cholesterol, and 
platelet count as significant risk factors for CS.(24)  For instance, 
Poorthuis et al. performed a systematic review where it aimed 
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to validate prediction models for ACS in a large external 
population. Six prediction models were identified; among 
them, the LR model developed by Weerd et al. demonstrated 
the highest predictive performance. The risk factors considered 
in the best-performing model included age, sex, smoking, HT, 
hypercholesterolemia, diabetes mellitus, and medical history 
of MI, stroke, or TIA. The model exhibited an AUC of 0.749 
for predicting ≥50% ACS and 0.779 for predicting ≥70% 
ACS. Targeted screening of individuals in the highest-risk decile 
successfully identified 35% of cases with ≥50% ACS and 42% 
of cases with ≥70% ACS.(25)

Another study implemented five ML models, where RF 
had the highest predictive value and achieved an impressive 
82% accuracy and a 90% AUC based on a dataset of 881 
cases for diagnosing of patients with ACS. The most influential 
factors included aneurysm disease, BMI, weight, height, and 
high lipid levels.(21)

ML-based predictive models are valuable for healthcare 
providers in identifying CS in asymptomatic individuals, even 
those without usual risk factors. These AI tools enhance risk 
assessment accuracy, aiding in early measures to prevent 
CV and cerebrovascular events in asymptomatic adults. 
Nonetheless, it is important to note that the omission of certain 
lifestyle factors in some models may limit their effectiveness, 
and their inclusion could refine the predictive accuracy.

Artificial intelligence in risk stratification 
The field of AI research focusing on risk stratification 

plays a crucial role in identifying patients with chronic vascular 
diseases who are prone to complications. This approach allows 
for early intervention to prevent potential issues and mitigate 
the risk of serious post-operative complications.(8)

Currently, there is a lack of effective tools for 
predicting outcomes in CEA patients, with existing models 
exhibiting methodological limitations and suboptimal 
performance, with AUC values ranging from 0.58 to 0.74. 
These results underscore the need to develop better surgical 
risk prediction tools for patients undergoing CEA.(6, 26) 
Table 3 provides an overview of studies focusing on risk 
stratification.

Recent studies have incorporated the Modified 
Integrative Cardiac Assessment (MICA) risk score, leveraging 
decision trees, to enhance predictive accuracy in CEA. A 
cohort study involving 194 patients analyzed variables such 
as the MICA risk score, BMI, age, sex, presence of chronic 
kidney disease, and degree of CS. Originally developed 
for cardiac risk assessment, the MICA score demonstrated 
substantial predictive capability for IND, achieving an AUC 
of 0.656 for perioperative stroke prediction. Patients with 
higher contralateral stenosis had 29% increased odds of 
IND, while higher ipsilateral stenosis exhibited a protective 
effect against IND occurrence. Obesity, defined by a BMI > 
30 kg/m², emerged as a prominent independent risk factor, 
quadrupling the likelihood of IND during CEA. These findings 
underscore the role of AI in refining patient stratification and 
preoperative risk management strategies, thereby improving 
surgical outcomes and enhancing patient safety.(10)

For instance, Bai P et al. used the XGBoost to 
predict ischemic events such as cerebral infarction and MI 
post-CEA in CS patients. Among 443 patients, there were 
6 cases of cerebral infarction and 10 of MI. Mean arterial 
pressure during occlusion, BMI, mean arterial pressure after 
the operation, the standard deviation of systolic pressure 
during occlusion, diastolic pressure during occlusion, mean 
arterial pressure entering the room, systolic pressure during 
occlusion, and age were identified as the variables affecting 
the risk of ischemic events. However, limitations like small 
sample size affected the model's stability. This study underlines 
the significance of BP in forecasting postoperative risks and 
suggests the influence of other factors like antiplatelet use 
and microemboli detachment.(27)

Matsuo K et al. used AI, particularly the XGBoost 
model, to predict 30-day ischemic stroke risk post-CEA or 
CAS in 170 patients, considering 17 clinical factors. The 
study found that the XGBoost model performed best, with 
an accuracy of 86.2%, but had a lower sensitivity of 31.9%. 
Key predictors by order included ICA peak systolic velocity, 
serum LDL-c, and the type of procedure (CEA or CAS). This 
study provides a useful tool for assessing stroke risk post-
procedure, determining if the patient is suitable for CEA 
or CAS based on the calculated risk, suggesting potential 
enhancements with larger datasets and more factors.(28) 

Tan J et al. used gradient boosted regression trees 
(GBRT) to predict early-phase post-operative hypertension 
(EPOH) after CEA.  Patients with EPOH had higher incidence 
of postoperative cerebral hyperperfusion syndrome (7.5%), 
and higher incidence of cerebral hemorrhage (3.8%). 
Analyzing 406 CEA procedures, their GBRT model showed 
a promising average AUC of 0.77 but a lower specificity 
of 0.52, possibly due to the small sample size. Key factors 
contributing to EPOH are identified, including intraoperative 
BP peaks, deceleration time of the E-wave velocity, propofol, 
ipsilateral severity of stenosis, cardiac index, fentanyl, and 
ephedrine. Despite limitations such as its retrospective design 
and reliance on single-center data, the study is valuable 
for early identification of high-risk patients, potentially 
enhancing patient care and resource use.(29)

Other investigators developed ML models to predict 
30-day major adverse CV events (stroke, MI, or death) 
following CEA. Six ML models were developed. The XGBoost 
model showed the highest accuracy, with an AUC of 0.91, 
significantly outperforming the traditional LR model, AUC of 
0.62. The key ten predictors were symptomatic CS, history 
of congestive heart failure (CHF), American Society of 
Anesthesiologists (ASA) class, functional status, transfer from 
another hospital, preoperative dialysis, physiologic high-risk 
factor, revision CEA, anatomic high-risk factor, and urgency 
of surgery.(26)

The utilization of ML in predicting postoperative 
outcomes for CEA represents a significant advancement with 
profound implications for the future of vascular surgery. It can 
lead to more informed clinical decision-making, potentially 
improving patient outcomes and reducing healthcare costs.
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Long-term event prediction
With an established understanding of the challenges 

posed by CS and the associated complications, the need for 
more accurate predictive tools becomes evident. 

By having the potential to outperform existing tools 
and the ability to accommodate a wide range of clinical 
variables, ML algorithms open doors to more accurate and 
automated perioperative risk mitigation strategies.(6) 

Li B et al. developed six ML models to predict stroke 
or death events within one year post CEA surgery. Among 
166369 patients, 7749 patients (4.7%) developed stroke or 
death. XGBoost model exhibited the highest performance, 
with an AUC exceeding 0.90. The top 10 predictors included 
eight preoperative features (dialysis, prior major amputation, 
preoperative living status, existing CHF, symptomatic CS, 
preoperative hemoglobin, existing HT, and prior ipsilateral 
CEA). Additionally, one intraoperative feature (surgical re-
exploration) and one postoperative feature (in-hospital MI) 
were significant predictors. Compared to existing models, 
these ML models demonstrated superior performance, 
making them a valuable tool for guiding the treatment of 
CS patients.(6) 

In another study, DeMartino et al. used the vascular 
quality initiative database to develop LR models predicting 
30-day stroke and 1-year mortality for asymptomatic patients 
undergoing CEA. The analysis included a total of 31,939 
patients for the stroke analysis and 23,512 patients for 
the mortality analysis. The developed models demonstrated 
promising performance, with an AUC of 0.67 for the 30-day 
stroke model and 0.76 for the 1-year mortality model.

Ten key predictive factors were identified for each 
model. For the 30-day stroke model, factors such as 
contralateral carotid occlusive disease, female sex, ASA class, 
prior aneurysm repair, preoperative hemoglobin level, coronary 
artery disease, HT, and estimated glomerular filtration rate 
class were associated with increased odds of stroke, while the 
use of antiplatelet agents and more severe ipsilateral stenosis 
were linked to lower odds of stroke. Similarly, for the 1-year 
mortality model, factors including anemia, ASA class, age, 
smoking status, contralateral carotid occlusive disease, severity 
of renal disease, chronic obstructive pulmonary disease, CHF, 
and diabetes were associated with higher odds of mortality, 
while a normal result on stress testing was associated with 
lower odds of mortality.(30) 

This underscores the importance of thorough 
preoperative risk assessment and optimization in patient 
management before CEA.

Future Developments and Ongoing Research
The integration of AI into the field of CS and vascular 

surgery marks a significant advancement in medical science. 
Originating in 1956, AI has become a crucial element in various 
daily activities, notably in medicine and surgery, including in 
vascular diagnostics, risk stratification, and outcome prediction 
in procedures like CEA.(31)

AI tools such as ML, natural language processing, and 
deep neural networks are increasingly being utilized to detect 

diseases such as abdominal aortic aneurysms, peripheral 
arterial disease and atherosclerotic cardiovascular disease, 
which often go underdiagnosed. These technologies not 
only improve disease detection and risk assessment but also 
enhance data collection and quantitative measures across 
large datasets by analyzing medical records. (32) 

In vascular surgery, accurate patient selection is crucial 
for optimizing clinical outcomes and minimizing complications. 
AI and ML play pivotal roles in this endeavor, particularly in 
risk assessment and personalized decision-making. AI-driven 
predictive models, integrating diverse clinical, biological, and 
imaging data, have emerged to forecast adverse events in 
procedures such as aortic aneurysm repair and carotid disease 
interventions. These advancements enable the identification of 
patients who stand to benefit most from surgical interventions, 
thus advancing precision medicine in vascular surgery.(33)

Surgeons leverage AI to evaluate patient risks, predict 
surgical outcomes, and determine optimal interventions. 
Moreover, AI-driven simulations in medical training enhance 
the proficiency of novice surgeons in performing essential 
endovascular procedures, ultimately enhancing patient care 
and surgical outcomes.(34)

The application of AI models in clinical practice is 
challenged by the need for comprehensive clinical validation, 
efficient resource management, and transparent decision-
making processes. Addressing ethical concerns and ensuring 
equitable deployment of AI across diverse demographics are 
pivotal considerations, underscoring the critical importance of 
establishing clear guidelines and robust policy frameworks. (7, 

8, 31) Key issues such as data security, informed consent, and 
algorithmic biases must be navigated carefully to responsibly 
implement (35) Furthermore, enhancing the quality of future 
research and its clinical application requires adherence to 
upgraded and standardized guidelines like prediction model 
risk of bias assessment tool (PROBAST) » PROBAST-AI and 
transparent reporting of a multivariable prediction model of 
individual prognosis or diagnosis  (TRIPOD) » TRIPOD-AI, which 
are critical for transparent and reliable AI model development 
and evaluation.(36)

Advancements in AI for vascular surgery, particularly 
in carotid procedures, are set to revolutionize clinical practice. 
Ongoing research is increasingly integrating AI with advanced 
imaging techniques and genomic data to enhance risk 
prediction models for stroke and refine treatment strategies. 
The development of AI-driven intraoperative guidance systems 
aims to optimize surgical precision and patient outcomes by 
providing real-time decision support to surgeons. Furthermore, 
researchers are exploring the application of deep learning 
algorithms to uncover novel biomarkers and therapeutic 
targets in carotid artery disease, facilitating more personalized 
and effective interventions. These advancements underscore 
AI's potential to not only improve diagnostic accuracy and 
procedural outcomes but also to pave the way for tailored 
therapeutic approaches that consider individual patient 
profiles and genetic susceptibilities.(37)

Collaboration between AI experts and clinicians is 
pivotal for developing patient-centered AI tools. This synergy 
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Study Year Study 
design

Total 
Patients

(n)
Application Clinical outcome Main Predictors

Guang  
et al.

2021
Prospective 
multicenter

205
Predicting carotid 

plaque vulnerability

DL-DCCP in CEUS video 
demonstrated superior 

diagnostic accuracy to assess 
the neovascularization of 
carotid plaques compared 

with two experienced 
radiologists who manually 

classified plaque vulnerability

NR

Huang  
et al.

2022 Prospective 548
Identifying 

symptomatic 
carotid plaques

A nomogram incorporating 
clinical and conventional US 
and US-based radiomics had 

high sensitivity, specificity, and 
accuracy for identification of 
symptomatic carotid plaques

Hypertension, hsCRP, 
smoking,

plaque sphericity
plaque echogenicity, 

remodeling index

Jamthikar 
et al.

2019 Retrospective 202
CV/stroke risk 
stratification

Developed a ML-based risk 
stratification  system of 

patients for preventing the 
occurrence of CV/stroke 

events

HbA1c,
PS and cIMTave

Yeh  
et al.

2022 Retrospective 538
Predicting carotid 
stenosis severity

Random forest model, 
identified several potential 

predictors to accurately 
classify artery stenosis

Peak systolic velocity 
– key predictor in 

unilateral ICA

Le  
et al.

2021 Retrospective 41 Predicting stroke

ElasticNet model achieved 
the highest performance 

identifying culprit and non-
culprit arteries and could 
improve stroke prediction

GLDM: Dependence 
Variance

GLSZM: Grey Level 
NonU- niformity

GLRLM: Long Run 
High Grey Level 

Emphasis

Xia  
et al.

2023 Retrospective 179
Predicting TIA in 

patients with mild 
carotid stenosis

RF model based on radiomics 
features and clinical features

showed the best performance 
predicting the occurrence of 

cerebrovascular events

3D diameter
LDL
UA

Table 1
Characteristics of the articles in the literature review that applied machine learning 
in carotid plaque detection

CEUS - carotid plaque contrast-enhanced ultrasound; cIMTave - carotid intima-media thickness average; CV – cardiovascular; DL-DCCP - deep learning-based detection and 
classification of carotid plaque; GLDM - Grey Level Dependence Matrix; GLSZM - Grey Level Size Zone Matrix; GLRLM - Grey Level Run Length Matrix Features;  
HbA1c - glycated hemoglobin; hsCRP - high-sensitivity C-reactive protein; ICA – internal carotid artery; LDL - low-density lipoprotein; ML – machine learning;  
NR – not reported; PS - plaque score; RF – random forest; TIA- transient ischemic attack; UA - uric acid; US – ultrasonography.

is essential for effectively integrating AI into clinical practice, 
especially in complex conditions like vascular surgery. Future 
endeavors should focus on refining AI systems to ensure reliability 
across diverse patient populations and healthcare settings. 

Despite these hurdles, ML holds significant potential 
to improve clinical decision-making in vascular surgery, 
signifying a pivotal phase of advancement in the field.

CONCLUSION

The integration of AI and ML into vascular surgery, 
especially to address CS, represents a transformative step 
forward. These technologies have greatly enhanced the 

accuracy of medical imaging, which is crucial for evaluating 
CS and guiding surgical interventions and best medical 
treatment. AI's role in improving risk assessment and 
predicting patient outcomes for CS offers an edge over 
traditional methods.

However, integrating AI into regular clinical practice 
requires addressing clinical validation and data privacy 
challenges. Despite these challenges, AI and ML hold 
immense potential to improve decision-making in vascular 
surgery, pushing the field toward more personalized and 
safer patient care. The future success of AI in this domain 
hinges on continued collaboration between AI professionals 
and medical practitioners.
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Study Year Study 
design

Total 
Patients

(n)
Application Clinical outcome Main Predictors

Yu et al. 2021 Case-control 2732 Screening ACS

MLP and XGBoost models 
showed the best performance 

to screen ACS in patients 
without risk factors

Age, BP, HCY and 
HDL-c

Yin et al. 2020
Cross 

sectional
2841 Predicting ACS

RF can be used to detect ACS 
among high risk patients of 

stroke

Family history of 
dyslipidemia, elevated 
LDL-c, reduced HDL-c, 
aging, and low BMI

Fan et al. 2021 Retrospective 18441 Predicting ACS

LR achieved the best 
performance and in the 
testing set, predicted 
1045/1966 ACS and 
3088/3566 non-ACS

Age, systolic BP, 
glucose, HDL-c and 

platelet count

Poorthuis 
et al.

2020
Systematic 

review
596 469

Predicting high risk 
of ACS

ACS can be selected using a 
prediction model and allows 

the initiation or intensification 
of cardiovascular medical 

therapy

Age, sex, smoking, 
hypertension, 

hypercholesterolemia, 
diabetes mellitus, MI, 
stroke, or TIA, height, 

measured blood 
pressure and blood 

lipids

Kigka et al. 2022 Prospective 881

Diagnosis and 

identification of 

ACS

RF showed the highest 
performance in

detecting asymptomatic CAS, 
which  could be beneficial in 

stratifying the risk of CAD and 
initiating early management 

of asymptomatic patients

Aneurysm disease, 

BMI, weight, height 

and HLP

Table 2 Summary of the articles that applied AI to carotid stenosis screening

ACS - asymptomatic carotid stenosis; BMI - body mass index; BP - blood pressure; CAD - carotid artery disease; CAS – carotid atherosclerosis; HCY –homocysteine;  
HDL-c - high-density lipoprotein cholesterol; HLP – hyperlipoproteinemia; LDL-c – low-density lipoprotein cholesterol; LR – logistic Regression; MI – myocardial infarction;  
MLP - multilayer perceptron; RF – random Forest; TIA- transient ischemic attack; XGBoost – Extreme Gradient Boosting.

ABBREVIATION LIST  
AI  Artificial intelligence
ACS  Asymptomatic carotid stenosis
ASA  American Society of Anesthesiologists
AUC  Area under the curve
BP  Blood pressure
BMI  Body mass index 
CAS  Carotid stenting
CEA  Carotid endarterectomy
CEMRA Contrast-enhanced magnetic resonance angiography
cIMTave Carotid intima-media thickness average
cIMT Carotid intima-media thickness  
CHF  Congestive heart failure
CTA  Computed tomography angiography
CV  Cardiovascular 
CS  Carotid stenosis
DL  Deep learning
DSA  Digital subtraction angiography
ECST  European Carotid Surgery Trial
EPOH  Early phase postoperative hypertension
FBS  Fasting blood sugar
FH  Family history
GBRT  Gradient boosted regression trees

HbA1c  Glycated hemoglobin
HDL-c  High-density lipoprotein cholesterol
HT  Hypertension
ICA  Internal carotid
LDL-c  Low-density lipoprotein cholesterol
LR  Logistic regression
ML  Machine learning
MI  Myocardial infarction 
MICA  The Gupta Perioperative Myocardial Infarct  
or Cardiac Arrest
NASCET North American Symptomatic Carotid 
Endarterectomy Trial
PROBAST Prediction model risk of bias assessment tool
PS  Plaque score
RF  Random forest
TC  Total cholesterol
TIA  Transient ischemic attack
TG  Triglyceride
TRIPOD Transparent reporting of a multivariable prediction 
model of individual prognosis or diagnosis 
US Ultrasound 
XGBoost Extreme gradient boosting (algorithm)
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Study Year Study 
design

Total 
Patients

(n)
Application Clinical outcome Main Predictors

Pereira-
Macedo 
et al.

2022 Prospective 194
Predicting  IND 
during CACC in 

CEA

MICA risk score might play a 
role in stratifying patients for 

IND during CEA

BMI > 30 kg/m2, obesity, 
higher MICA risk score, 
and higher contralateral 

stenosis

Bai et al. 2020 Retrospective 443

Screening 
key predictor 

factors of 
early cerebral 
infarction and 

myocardial 
infarction after 

CEA

ML model identified eight 
predicting  factors, however 
further sudies are needed

Mean arterial pressure 
during occlusion, mean 

arterial pressure after the 
operation, the standard 

deviation of systolic 
pressure during occlusion, 
diastolic pressure during 
occlusion, mean arterial 
pressure entering the 

room, systolic pressure 
during occlusion, BMI and 

age

Matsuo 
et al.

2022 Retrospective 170

Predicting 30-
day ischemic 

stroke after CEA 
or CAS

XGBoost model had 
the highest predictive 

performance  and enables 
preoperative calculation of 
post-CEA/CAS stroke risk

ICA-PSV, LDL-c, and the 

type of procedure (CEA 

or CAS)

Tan et al. 2020 Retrospective 367
Predicting 

EPOH after CEA

GBRT helps to identify high 
risk patients for EPOH and 

reduce complications

Peak systolic BP, DcT, 
propofol, ipsilateral 

severity of stenosis, cardiac 
index, fentanyl, and 

ephedrine

Li et al. 2023 Prospective 38853

Predicting 
30-day major 

adverse 
cardiovascular 
events (stroke, 
MI or death) 

after CEA

XGBoost model achieved 
the best performance for 
predicting 30-day MACE 
following CEA and have 

potential to be used in the 
perioperative management 

of patients, aiming to reduce 
adverse outcomes

Symptomatic CS, 
history of congestive 

heart failure, ASA class, 
functional status, transfer 

from another hospital, 
preoperative dialysis, 
physiologic high-risk 
factor, revision CEA, 

anatomic high-risk factor, 
and urgency of surgery

Table 3 Summary of articles of AI research focusing on risk stratification

ASA- American Society of Anesthesiologists; BMI - mody mass index; BP – blood pressure; CACC- carotid cross-clamping; CAS - carotid stenting; CS – carotid artery stenosis; 
CEA - carotid endarterectomy; DcT - deceleration time of the E-wave velocity; EPOH - early-phase post-operative hypertension; GBRT - gradient boosted regression trees;  
ICA -PSV - internal carotid artery peak systolic velocity; IND - intraoperative neurologic deficits; LDL-c – low-density lipoprotein cholesterol;  
MACE- major adverse cardiovascular events; MI – myocardial infarction; MICA -  The Gupta Perioperative Myocardial Infarct or Cardiac Arrest;  
ML -  machine learning; XGBoost – Extreme Gradient Boosting.
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