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THE USE OF RADIOMIC ANALYSIS
IN CARDIOVASCULAR DISEASES

A The recent years of the cardiovascular medicine saw a rapid development of advanced imaging modalities. The 
new era of personalized medicine takes advantage of what can be interpreted from medical images, searching for underlying 
connections between image phenotyping and biological characteristics to support precise clinical decisions. The application 
of radiomics in cardiovascular imaging has lagged behind other fields, such as oncology. While the current interpretation of 
cardiac and vascular images mainly depends on subjective and qualitative analysis, radiomics uses advanced image analysis to 
extract numerous quantitative features from digital images that are unrecognizable to the naked eye. The goal of this narrative 
review is to highlight the main findings of the recent use of radiomic analysis in the cardiovascular field. English-language 
articles published in the database PubMed were used for this review. The keywords used in the search included radiomics, 
cardiovascular or cardiac or aortic. Radiomics is expected to contribute to a more precise phenotyping of the cardiovascular 
disease, which can improve diagnostic, prognostic, and therapeutic decision making in the near future.
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INTRODUCTION

The concept of radiomics was first described by Lambin 
and colleagues1 in 2012. Radiomics assumes that images con-
tain information specific of the disease that cannot be seen by 
human naked eye and, therefore, by extracting data regarding 
pixel distribution and interrelationship, extracts quantitative 
data.2 The main goal of radiomics is to extract quantitative 
features from images that can be used to guide clinical de-
cisions, help in differential diagnosis, and predict treatment 
outcomes.1, 3-5 Different types of medical imaging can be ana-
lyzed including magnetic resonance imaging (MRI), comput-
ed tomography (CT), positron-emission-tomography (PET)2. 
The workflow comprises image acquisition and segmentation 
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(manual, automated or semi-automated) of the region of in-
terest (ROI) (Figure 1). Next, features are extracted from this 
ROI with subsequent data analysis.1, 2, 6 

Different types of radiomic features can be extracted 
from medical images. Using the software PyRadiomics (https://
pyradiomics.readthedocs.io), these includes shape-based fea-
tures, first-order statistic features, and texture-based features 
(Figure 2). Shape-based features are independent of gray level 
intensity and describe 2D- and 3D-geometric properties of the 
region of interest (ROI) like area, volume, perimeter, contours 
irregularity, and compactness (A). First-order statistic features 
describe the gray-level distribution within the ROI, without 
emphasis on spatial relationships (B). Texture-based features 
describe the spatial relationship between neighboring voxels 
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with different matrices (C).2, 3, 6-10 

How to perform a radiomics analysis
A major challenge for the field of radiomics is the lack 

of reproducibility and validation of radiomic studies. The im-
age biomarker standardization initiative1 aimed at standard-
izing the radiomics workflow from nomenclature to reporting 
guidelines and sets a general framework for radiomic analysis. 
All radiomic analysis follow these steps: 1) imaging and image 
processing; 2) radiomics features extraction; 3) feature selec-
tion and 4) data analysis.

1) Imaging and image processing 
Radiomic analysis has been performed on CT2, MRI3 and 

PET4 images. Depending on each vendor, different post-acqui-
sition processing may be implemented on the final image (for 
example, suppressing artifacts created by metal objects). The 
extent of post-processing may limit the generalizability of the 
results if the analysis is to be repeated using images acquired 
on other vendors. These images are then segmented as to de-
fine the ROI in which radiomic features are extracted. This seg-
mentation can either be made manually, for which there are 
several open-source softwares, such as 3D Slicer5,6 and Horos7. 
Give the number of image studies required for a successful 
radiomics analysis (hundreds to thousands), manual segmen-
tation emerges as a very time-consuming process and is sub-
jected to intra- and inter observer variability. Semi-automated 
and fully automated algorithms were developed to aid on the 
segmentation of several anatomical structures, however they 
may lack external validity and the exported segmentation must 
be inspected manually. 

 
2) Radiomic features extraction
After image acquisition and ROI segmentation, both 

products are read into an appropriate software for feature ex-
traction. Several software may be used for radiomic feature ex-
traction, namely open-source solutions such as Pyradiomics,8 
SlicerRadiomics (a radiomics extension for 3D Slicer that uses 
Pyradiomics library)6,9 and Radiomics Image Analysis software 
package in the R environment.10 Sometimes, investigators may 
use proprietary software. There may be some differences be-
tween software regarding feature extraction, so that must be 
kept in mind when extrapolating results to other software.

Several type of radiomic features can be extracted. Ta-
ble 1 shows the most relevant family of features and their defi-
nition. The definitions follow the image biomarker standard-
ization initiative.1 As previously explained, these constitute 
quantitative translations of the voxels in the DICOM image.

3) Feature selection
Given the large number of radiomic features that may 

be extracted from each DICOM file (for example, Pyradiom-
ics, on average, extracts ~1500 features per image) and that 
many of these features are correlated with each other (as they 
may represent transformations of one another), feature selec-
tion must be performed. Several algorithms for feature selec-

tion exist but they will not be outlined on this manuscript. 
Their objective is to reduce the number of input variables (i.e. 
radiomic features) to reduce the cost of modelling and to im-
prove the model predictive performance.

4) Data analysis
Data analysis must be performed using adequate sta-

tistical methods to model the relationship between the radio-
mic features and the outcome of interest. This may be done 
through various methods, usually correlation (plots, logistic, 
linear, multiple). Usually, the study population is split into a 
development dataset (~80% of the population) and a test-
ing or validation dataset (~20% of the patients). The perfor-
mance of the model that was built on the previous steps may 
be assessed through receiver operating characteristic (ROC) 
curves parameters.11 

CLINICAL APPLICATIONS

Coronary and cardiac diseases
The growing availability of dedicated cardiac CT for the 

assessment of coronary artery disease and the similar growing 
availability for cardiac MRI have allowed for the high through-
put radiomic analysis of the generated images. Cardiac CT 
radiomic studies have mainly focused on two topics: epicar-
dial adipose tissue and coronary plaques. It has been widely 
shown that adipocytes are not just quiescent cells, but they 
interact with neighboring structures via paracrine and vasoc-
rine signaling. Radiomic analysis of perivascular adipose tissue 
has shown both correlations with the extent of adipose tissue 
inflammation and fibrosis12 and with major adverse cardio-
vascular events including myocardial infarction.12,13 Radiomic 
analysis of the epicardial adipose tissue also predicted the risk 
of post-operative atrial fibrillation in patients who underwent 
surgical aortic valve replacement.14 Not all coronary plaques 

Figure 1 Final aspect of the segmentation mask corresponding to 
the proximal neck of an abdominal aortic aneurysm in a 
3D computed tomographic reconstruction.
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Table 1 Families of radiomic features.

Family Definition

Morphological features

Local intensity

Intensity-based statistics

Intensity histogram

Intensity-volume histogram

Grey level co-occurrence 

matrix

Grey level run length matrix

Grey level size zone matrix

Grey level distance zone 

matrix

Neighbourhood grey tone 

difference matrix

Neighbouring grey level 

dependence matrix

Describes geometric aspects of a ROI, such as area, volume and axis length.

Uses voxel intensities within a defined neighbourhood around a center voxel 

to compute local intensity features

Describes how intensities within the ROI are distributed.

Discretises the original intensity distribution into intensity bins.

Describes the relationship between discretised intensity i and the fraction of 

the volume containing at least intensity i, ν27.

Expresses how combinations of discretised intensities (grey levels) of 

neighbouring pixels, or voxels in a 3D volume, are distributed along one of 

the image directions.

Assesses the distribution of discretised grey levels in an image, through 

assessing run lengths (defined as the length of a consecutive sequence of 

pixels or voxels with the same grey level along direction m).

Counts the number of groups (or zones) of linked voxels. Voxels are linked if 

the neighbouring voxel has an identical discretised grey level. Whether a voxel

classifies as a neighbour depends on its connectedness. In a 3D approach to 

texture analysis we consider 26-connectedness, which indicates that a center 

voxel is linked to all of the 26 neighbouring voxels with the same grey level.

Counts the number of groups (or zones) of linked voxels which share a 

specific discretised grey level value and possess the same distance to ROI 

edge. Captures the relation between location and grey level.

Contains the sum of grey level differences of pixels/voxels with discretised 

grey level I and the average discretised grey level of neighbouring pixels/voxels 

within a Chebyshev distance δ.

Aims to capture the coarsness of the overall texture.
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Figure 2 Radiomic features (adapted from 7, 9, 10). (A) Shape Features describe geometric features of the ROI. (B) First-Order Statistic Features 
are based on the gray level histogram and describe the distribution of the pixel intensities within the ROI without accounting their spatial 
relationships. (C) Texture-based Features reflect the spatial arrangement of pixels within the ROI, that is, it describe the relationship between 
neighboring pixels intensity with different matrices. These include GLCM that describe the relationship between pairs of pixels in a given 
direction and distance, GLDM that describes the gray level dependencies, that is defined as the number of voxels that  have the same gray 
tone as the central voxel, GLRM that describe the number of runs of continuous pixels in one direction with same gray level intensity, GLSZM 
that describe the relationship between consecutive pixels with same gray level intensity, regardless of direction and NGTDM that describe the 
difference between the gray level of a pixel and its neighborhood. Legend: ROI, Region of Interest; GLCM, Gray Level Co-occurrence Matrix; 
GLRM, Gray Level Run-length Matrix; GLSZM, Gray Level Size Zone Matrix; NGTDM, Neighboring Gray Tone Difference Matrix; GLDM: Gray 
Level Dependence Matrix.

have the same risk of rupture. Vulnerable plaque detection 
may depend on a keen clinical eye and on other, more inva-
sive, procedures. Radiomic analysis of coronary plaques has 
shown promising results on the detection of plaque vulner-
ability.10,15,16 Single studies have also reported a role for car-
diac CT radiomics on the further discrimination of clinically 
challenging situations. For example, one study reported the 
role of radiomic analysis to identify patients with left ventric-
ular hypertrophy at a higher risk of heart failure or death.17 

Another study suggested a role of radiomics in distinguishing 
between the causes of prosthetic valve obstruction, namely 
pannus from other etiologies.18

Cardiac MRI studies have largely focused on patients 
with hypertrophic cardiomyopathy, given the prevalence of 
this disease and the need to better differentiate patient’s 
prognosis, as to decide the type of therapy (i.e, implantable 
cardioverter-defibrillator implantation). Useful applications 
of radiomic analysis of cardiac MRI images in these patients 
may be related to the differentiation of the much more com-

mon hypertensive heart disease19 and to detect the presence 
and extent of myocardial fibrosis.11,20

Despite promising, radiomics is still an investigational 
topic in cardiology and clinical application depends on fur-
ther studies with the development of standardized tools for 
image acquisition and processing.

Aortic diseases
The value of the radiomic analysis has been demon-

strated for both aortic aneurysms and dissections. Radiomic 
analysis predicted the aneurysm expansion after endovas-
cular repair of abdominal aortic aneurysms (EVAR).11 Early 
postoperative CT texture analysis was performed using three 
families of radiomic features—the grey-level co-occurrence 
matrix (GLCM), the grey-level run length matrix (GLRLM), and 
the grey-level difference method (GLDM). GLCM yielded the 
best performance (accuracy: 85%; AUC: 0.90), followed by 
GLRLM (accuracy: 87%; AUC: 0.86), and GLDM (accuracy: 
86%; AUC: 0.83). All three texture features showed superi-
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or predictive ability over clinical risk factors (accuracy: 69%; 
AUC: 0.66), conventional imaging features (accuracy: 69%; 
AUC: 0.67) and both combined (accuracy: 75%; AUC: 0.72). 
The ability to predict sac expansion after EVAR was also 
demonstrated in patients with type 2 endoleak after EVAR.12 
The radiomic features of the follow up CT scans (58 and 51 
features from the one- and six-month CT scans, respectively) 
were used to develop a machine-learning model to predict 
the aneurysm sac dimension changes at one year. The clas-
sifier trained on one-month signatures was able to predict 
sac expansion at one year with an area under curve (AUC) of 
89%, presenting 79% specificity and 100% sensitivity. Simi-
larly, the classifier developed with six-month radiomics data 
showed an AUC of 96%, specificity of 91%, and sensitivity 
of 100%.

Guo et al.13 and Zhou et al.14 investigated the value 
of non-contrast CT-based radiomic signature in the diagnosis 
of acute aortic dissection. Radiomic features extracted from 
non-contrast CT images were used to widely and objectively 
screen for acute thoracic aortic syndromes. The predicted di-
agnosis was in good agreement with the probability of tho-
racic aortic dissections. The radiomic signature demonstrat-
ed AUCs, diagnostic accuracy, sensitivity, specificity of 90%, 
90%, 86% and 92%, respectively, in one study13 and 95%, 
90%, 94% and 85%, respectively in the second study.14

Non-cardiovascular Diseases
Over the last years, radiomics have emerged as a 

method of analyzing medical images. The main goal of ra-
diomics is to extract quantitative features from images that 
can be used to guide clinical decisions, help in differential 
diagnosis, and predict treatment outcomes.1, 3-5 Radiomics 
has been applied in several medical areas such as molecu-
lar classification of tumors,15, 16 tumor staging,17 prognostic 
evaluation,18, 19 and evaluation of diseases phenotypes such 
as coronary artery disease.20, 21 This technology offers several 
advantages due to their non-invasive character, the possibil-
ity to account for intra-tumor heterogeneity by a complete 
analysis of the tumor, and inter-lesional heterogeneity analy-
sis by sampling all the tumors within the same patient as well 
as the tumor microenvironment. 22

LIMITATIONS

Cardiovascular radiomics has many challenges to 
overcome before it is feasible for daily clinical applications. 
The main limitations that impact its implementation in clinical 
practice include:23-27 (a) its technical complexity; (b) need of 
standardization of the acquisition protocols and data analysis 
techniques to offer a robust framework; (c) improvement in 
reproducibility as it is affected by a series of factors including 
image acquisition, reconstruction, and analysis; (d) the manu-
al segmentation of the target structures may cause higher in-
terobserver variability and lower efficiency because the success 
of the procedure depends on the expertise of the operator; 
(e) the need for better accuracy in automatic segmentations. 

CONCLUSION

Radiomic analysis can detect disease-specific and pa-
tient-specific information at a structural level that is not rec-
ognized to the naked eye, offering a deeper understanding of 
the link between imaging phenotyping and tissue pathology. 
This may have significant clinical implications and can contrib-
ute to clinical decision-making in cardiovascular diseases. Nev-
ertheless, studies focusing on radiomics-based cardiovascular 
imaging need an overall improvement in the methodological 
quality. A more standardized methodology in the radiomics 
workflow is needed, especially in terms of study design and 
validation, in order to improve the feasibility of its clinical ap-
plications.
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